A Niche for Biomass

February 5, 2015

Renewable, bio-based products may offer many benefits ranging from decreased greenhouse gas emissions to improved domestic energy security. However, despite growing interest in replacing fossil resources with renewable alternatives, biomass refining industries, particularly those producing biofuels, have struggled to compete with the well-established machinery of petroleum refining. The US has the capacity to sustainably harvest a considerable amount of biomass, but that quantity falls short of the amount of petroleum that we use for transportation. Biofuels have their merits, but it is unlikely that they will ever entirely replace the fossil fuels that we use to fill our gas tanks — at least not at our current rates of consumption. While biomass may not displace fossil fuels when it comes to transportation, there are places where biomass could be competitive with fossil fuels. Crude oil is also used to synthesize reactive chemical intermediates that are used in production of solvents, plastics, and polymers. Compared to traditional fuels like gasoline or diesel, these commodities are often challenging to make and relatively expensive. Often, they are easier to synthesize from biomass than they are from crude oil, giving renewable resources a competitive advantage. This could make industries dedicated to the production of bio-based chemicals possible in the near future. An example of this type of chemical intermediate is levulinic acid, which can be prepared from sugars found in abundance in biomass. Levulinic acid can be used to produce many products that are either identical to or functionally equivalent to current petrochemicals. Assistant Professor Jesse Bond of Syracuse University's Department of Biomedical and Chemical Engineering has received the prestigious National Science Foundation (NSF) Faculty Early Career Development (CAREER) award to further explore levulinic acid’s applications. His work will support development of catalysts and cost-effective technologies that facilitate oxidation of levulinic acid to deliver value-added chemical products. “My immediate hope is that this research pushes a technology forward that has a positive net impact on sustainability,” Bond said. “Beyond that, my ultimate goal is to teach our students about major problems facing society and the ways that chemical engineering and catalysis can address those problems. No matter where this research leads or how the biotechnology landscape unfolds, catalysis will always have a role in making useful products from available natural resources.” “Through this work, we are gaining fundamental knowledge about catalytic reactions, and those insights are generally universal. If I have trained my students to think rigorously about governing principles, to ask questions of fundamental importance, and to design experiments that answer those questions—I think those are the most important things that can come from their education.” About the NSF CAREER Award The NSF CAREER Program is a Foundation-wide activity that offers the National Science Foundation's most prestigious awards in support of junior faculty who exemplify the role of teacher-scholars through outstanding research, excellent education and the integration of education and research within the context of the mission of their organizations. Such activities should build a firm foundation for a lifetime of leadership in integrating education and research. Educational Outreach Bond’s research will also support his to work to host a series of STEM workshops designed to improve the public’s understanding of energy and resource sustainability and engage SU students in community-based service learning projects.