L.C. SMITH COLLEGE OF ENGINEERING AND COMPUTER SCIENCE

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

GRADUATE PROGRAM PROFILES FOR:
MASTER OF SCIENCE IN CIVIL ENGINEERING
MASTER OF SCIENCE IN ENVIRONMENTAL ENGINEERING
MASTER OF SCIENCE IN ENVIRONMENTAL ENGINEERING SCIENCE
MASTER OF SCIENCE IN ENVIRONMENTAL ENGINEERING WITH A SPECIALIZATION IN PUBLIC ADMINISTRATION
DOCTOR OF PHILOSOPHY IN CIVIL ENGINEERING

SYRACUSE UNIVERSITY

Civil and Environmental Engineering
151 Link Hall
Syracuse, New York 13244-1240
Tel.: (315) 443-2311
Fax: (315) 443-1243
URL: http://www.lcs.syr.edu/academic/civilenvironment_eng/index.aspx
PROGRAMS IN CIVIL AND ENVIRONMENTAL ENGINEERING

PROGRAM DESCRIPTION

The Department of Civil and Environmental Engineering (CIE) at Syracuse University (SU) was established by the Board of Trustees in 1876. Graduate degrees have been awarded since the 1920's. Civil and Environmental Engineering is one of four departments within the L.C. Smith College of Engineering and Computer Science (LCS). The department has a long tradition of excellence in graduate teaching and research. Graduate students work closely with their faculty advisors on a variety of research projects, and receive individualized attention from the faculty. The CIE faculty has a wide range of research and teaching interests. The graduate programs are divided into four disciplines: Environmental Engineering, Geotechnical Engineering, Construction Engineering, and Structural Engineering.

Enrollment at Syracuse University is approximately 6,000 graduate students and 12,000 undergraduate students. Currently, about 1,700 Masters and 150 Doctoral degrees are awarded by the University each year. The department awards 10-15 M.S. and 1-3 Ph.D. degrees per year.

FACILITIES

The Civil and Environmental Engineering Department office is located in 151 Link Hall on the main campus of Syracuse University. Link Hall is where all major computer and research laboratory facilities of the CIE Department are housed.

Laboratory facilities: The Department of Civil and Environmental Engineering maintains several laboratories for graduate instruction and research. They include an environmental unit operations laboratory, an environmental chemistry and a microbiology laboratory, a geosynthetics laboratory, a geofoam research laboratory, a soil mechanics laboratory, an image analysis laboratory, and a structures/materials laboratory. These facilities are open to all graduate students enrolled in our programs. The environmental engineering laboratories are part of the Center for Environmental Systems and Engineering (CESE) at Syracuse University. The Center (www.ecs.syr.edu/centers/cese) is the focal point for research and teaching of the scientific and engineering aspects of environmentally related subjects. These laboratories are equipped with state-of-the-art experimental, analytical and field equipment. The geotechnical engineering laboratories include a soil-mechanics laboratory, a geosynthetics laboratory, a geofoam laboratory (geofoam.syr.edu) and a computer-based image analysis laboratory. These laboratories have extensive in-situ and in-house equipment for testing of both natural and man-made geomaterials. The structures/materials laboratory is equipped with three universal testing machines including a 1.5MN capacity INSTRON 5595-300HVL machine with a computer data acquisition system, and a 3-D reaction frame with an assortment of hydraulic rams and actuators for testing of large-scale structural systems and components.

Computer facilities: Graduate students enrolled in the Department of Civil and Environmental Engineering have access to a wide variety of computer facilities. The L.C. Smith College of Engineering and Computer Science maintains several microcomputer laboratories in Link Hall. These laboratories are equipped with advanced PCs that support a variety of general purpose utility programs for word processing, computer graphics, spreadsheet calculations and data analyses as well as a number of discipline-specific software packages for engineering and scientific computations. Additional microcomputer and workstation clusters are located in Schine, Goldstein, Archbold, Brockway, Kimmel Halls, and the Center for Science and Technology. These computer clusters are open to all students of Syracuse University.

The university maintains and operates several time-sharing UNIX-based computers for advanced scientific and engineering computations. All these computers are connected to a campus-wide network and can be accessed from any public terminal. The computers support a variety of word processing, graphics and mathematics software as well as a number of programming languages. In addition, all computers have internet and electronic mail access that allow users to communicate both inside and outside of the Syracuse University campus.
PROGRAM REQUIREMENTS

Master of Science Programs

All candidates for the Master of Science (M.S.) programs must have a Bachelor of Science (B.S.) degree in Civil or Environmental Engineering, or a closely-related field from an accredited institution. Candidates with undergraduate degrees in other fields will have their backgrounds evaluated to determine whether additional undergraduate courses are required in their program of study, as a condition for admission to the appropriate M.S. program. These additional courses will not carry credit toward the M.S. degree.

Programs are planned by the students in consultation with their advisors. A series of fundamental courses specified by area (Environmental, Geotechnical or Structural) must be satisfactorily completed by each candidate (see Appendix A). At least half of the coursework must be at or above the 600-level. Students who have taken the lower level of a double-numbered course (e.g., a course offered at both the 400 and 600 levels) may not take the higher level of the same course for credit. M.S. candidates may transfer a maximum of six graduate credits from other institutions. Most students complete their degrees in one and a half to two years. All students are expected to complete their program of study within five calendar years. A candidate must maintain a B or better average (3.00 grade point average) in all graduate coursework. Thesis and non-thesis options are available. Students receiving financial aid and/or anticipating further graduate study at the doctoral level are strongly advised to pursue the thesis option. We welcome students who wish to pursue their master’s degrees through part-time study while working full-time.

Master of Science in Civil Engineering

(1) Requirements with Thesis - 30 credit hours. The candidate must complete a set of core courses in the student's chosen area of specialization. In addition, the student must complete a cohesive program of elective coursework approved by the student's advisor, as outlined in the attached program study. All M.S. candidates are expected to participate in faculty/student seminar series each year.

(2) Requirements without Thesis - 30 credit hours. The candidate must complete a set of core courses in the student's chosen area of specialization. In addition, the student must complete a cohesive program of elective coursework approved by the student's advisor. All M.S. candidates are expected to participate in the faculty/student seminar series each year. To complete the degree requirement, the student must take CIE 996-Master's Project for 3 credits on a civil engineering topic approved by the advisor and at least one additional reader.

Master of Science in Environmental Engineering

The M.S. in environmental engineering is intended for students with undergraduate engineering degrees.

(1) Requirements with Thesis - 30 credit hours. The candidate must complete a set of core courses in the fundamental environmental engineering areas, which includes CIE 671, CIE 672 and CIE 642. If the student has already taken one or more of these courses at the undergraduate level, he/she will be expected to take corresponding higher level courses in these fundamental engineering areas. In addition, the student must complete a cohesive program of elective coursework approved by the student's advisor. All M.S. candidates are expected to participate in faculty/student seminar series each year. Furthermore, six credits of CIE 997-Master’s Thesis, must be taken culminating in the defense of the thesis administered by the student’s thesis committee.

(2) Requirements without Thesis - 30 credit hours. The candidate must complete a set of core courses in the fundamental environmental engineering areas, which includes CIE 671, CIE 672 and CIE 642. If the student has already taken one or more of these courses at the undergraduate level, he/she will be expected to take higher level courses in these fundamental engineering areas. In addition, the student must complete a cohesive program of elective coursework approved by the student's advisor. All M.S. candidates are expected to participate in faculty/student seminar series each year. Furthermore, the student is required to take one of the following courses: CIE 600-Environmental Assessment, or CIE 996-Master's Project, for 3 credits. If the student chooses to take CIE 996, the project must address a topic in environmental engineering or environmental science and be approved by the advisor and at least one additional reader.
Master of Science in Environmental Engineering Science

The M.S. in environmental engineering science is intended for students with other technical/scientific undergraduate degrees.

(1) Requirements with Thesis - 30 credit hours. The candidate must complete a set of core courses offered by the Department of Civil and Environmental Engineering (Appendix A). In addition, the student must complete a cohesive program of elective coursework approved by the student's advisor. All M.S. candidates are expected to participate in faculty/student seminar series each year. Furthermore, six credits of CIE 997-Masters Thesis, must be taken culminating in the defense of the thesis administered by the student’s thesis committee.

(2) Requirements without Thesis - 30 credit hours. The candidate must complete a set of core courses offered by the Department of Civil and Environmental Engineering (Appendix A). In addition, the student must complete a cohesive program of elective coursework approved by the student's advisor. Furthermore, the student is required to take one of the following courses: CIE 600-Environmental Assessment, or CIE 996-Master's Project, for 3 credits. If the student chooses to take CIE 996, the project must address a topic in environmental engineering or environmental science and be approved by the advisor and at least one additional reader.

Master of Science in Environmental Engineering with a Specialization in Public Administration

(1) Requirements with Thesis - 30 credit hours. The candidate must complete a set of core courses in the fundamental environmental engineering areas, which includes CIE 671, CIE 672 and CIE 642. If the student has already taken one or more of these courses at the undergraduate level, he/she will be expected to take corresponding higher level courses in these fundamental engineering areas. In addition, the student must complete the requirement for the Certificate of Advance Study in Public Management and Policy* (12 credits) in public administration. Furthermore, six credits of CIE 997-Master’s Thesis, must be taken culminating in the defense of the thesis administered by the student’s thesis committee.

(2) Requirements without Thesis - 30 credit hours. The candidate must complete a set of core courses in the fundamental environmental engineering areas, which includes CIE 671, CIE 672 and CIE 642. If the student has already taken one or more of these courses at the undergraduate level, he/she will be expected to take higher level courses in these fundamental engineering areas. In addition, the student must complete the requirement for the Certificate of Advance Study in Public Administration* (12 credits) in public administration. Furthermore, the student is required to take one of the following courses: CIE 600-Environmental Assessment, or CIE 996-Master's Project, for 3 credits. If the student chooses to take CIE 996, the project must address a topic in environmental engineering or environmental science and be approved by the advisor and at least one additional reader.

*Students must apply and be admitted to the certificate program. Students may apply after completing one semester in environmental engineering. For additional information see http://www.maxwell.syr.edu/pa_degree_programs.aspx?id=649

Doctor of Philosophy in Civil Engineering

The Civil and Environmental Engineering Department offers the Ph.D. degree to students interested in research and teaching. The primary focus is on the development of skills to pursue original research in careers in academia, government, or research institutions. Students usually complete the degree within three to five years.

Admission requirements:

(1) B.S. in civil engineering or other acceptable field from an accredited institution.
(2) M.S. degree from an accredited institution.
(3) B+ average in M.S. program coursework.
(4) Satisfactory scores on all required graduate entrance examinations.
(5) Departmental approval.
(6) Demonstrated potential for excellent research work.

Advising:
The candidate, with advice from the department chair and/or the program director, selects a dissertation advisor, whose consent must be obtained. The candidate and the advisor together, with consent from the department chair, select the members of the examination and dissertation committees. The candidate, in consultation with the advisor and dissertation committee, selects a program of coursework appropriate to the research and scholarly interests of the student.
Course requirements:

(1) Ph.D. students are required to take a minimum of 48 credit hours of coursework beyond the B.S. level, or at least 18 credit hours of coursework beyond the M.S. level.

(2) For students with an M.S. degree, at least two-thirds of the Ph.D. coursework must be at or above the 600 level, and no more than one-third of the coursework can be independent study (CIE 690).

(3) Ph.D. students are required to maintain an average GPA of B+ (3.333) in all Ph.D. coursework, and they are required to participate in the faculty/student seminar program.

Examinations:

1. Qualifying Examination: The qualifying examination is to be conducted within the first year of enrollment in the Ph.D. program. The examination is composed of two parts: a written exam followed by an oral examination covering materials from at least 3 graduate level classes that the student has taken at Syracuse University, as well as relevant materials from undergraduate coursework. The purpose of this examination is to assess the student’s background knowledge in his/her primary subject area(s) and his/her preparedness for Ph.D. level research. The exam committee shall consist of at least 3 faculty members. The majority of the committee membership shall be faculty members from the Department of Civil and Environmental Engineering at Syracuse University. The result of this examination is a decision by the exam committee as to whether or not the student should continue in the Ph.D. program. For the candidate to pass this examination, a majority of the committee must vote favorably. If the student does not pass this examination, he/she can request to retake the examination one more time in the following semester. In the event that the student fails the examination for the second time, he/she will be asked to terminate his/her Ph.D. study.

2. Candidacy Examination: This examination is conducted in the semester after completion of the student’s Ph.D. coursework, but no later than the fifth semester after admission into the Ph.D. program. Prior to this examination, the student shall prepare a detailed research proposal that includes but is not limited to a review of relevant literature leading to a statement of objectives (including major questions or hypotheses to be addressed in the dissertation), a description of methods and approaches to be used, and a brief description of the significance of the proposed work. The proposal will often include preliminary results from the student’s work to date.

The candidacy examination is an oral exam and is presided over by a dissertation committee comprised of at least five members. The majority of the committee membership shall be faculty members from the Department of Civil and Environmental Engineering at Syracuse University. This committee will follow the student’s work through his/her Ph.D. Dissertation Defense. Students are required to deliver their research proposals to all dissertation committee members and notify the Department Graduate Secretary of the examination time and place at least two weeks prior to the exam. Any committee member who receives the dissertation proposal less than 14 calendar days prior to the defense may ask the Department Chair for a postponement of the defense.

The norm for the duration of the examination, which is open to all Department faculty members, is two hours. The oral examination is initiated by a 30-40 minute summary of the dissertation research proposal and progress to date by the student. Following the presentation, the dissertation committee and Department faculty ask the student questions concerning the research proposal. Following the examination, the dissertation committee confers to determine if the student is a suitable Ph.D. candidate based on his/her performance on the candidacy examination, as well as to determine if the student should be required to take additional coursework beyond the minimum required for the degree. If the student successfully completes the candidacy examination by receiving an affirmative vote from the majority of the committee, the advisor notifies the student and the Graduate School and the student is considered a “Ph.D. candidate.” If the student does not successfully complete the candidacy examination, the committee determines whether the student will be permitted to retake the examination after a minimum period of six months or whether the student’s Ph.D. program should be terminated.

3. Dissertation Defense: The final phase of the Ph.D. program is the dissertation defense. The doctoral dissertation is a summary of all phases of the student’s research endeavor. The final stage in the preparation of this dissertation is its distribution to all members of the dissertation committee. The student should not distribute the final draft of the dissertation until the advisor is satisfied with it. Readers should be presented with a polished draft that has been proofread, paginated, and contains professional quality tables and figures with captions. All members of the dissertation committee must be given at least two weeks to review the dissertation before the defense. Any committee member who receives the thesis less than 14 calendar days prior to the defense may ask the Exam Committee Chair for a postponement of the defense.

When the Ph.D. candidate has completed the dissertation that has been approved by his/her advisor, a copy is to be provided to each of the dissertation committee member and a defense date is scheduled. The dissertation defense is an open examination and all members of the University community are invited. This is accomplished by announcements to students and faculty in the Department at least one week in advance of the defense, as well as a notice in The Syracuse Record.
The dissertation defense is to be conducted in accordance with University Policies and Procedures for Dissertation and Oral Examination. The norm for the duration of the dissertation defense is two hours. The dissertation defense is usually initiated with a 30-40 minute summary of the research conducted. This is followed by open questioning from the audience. When this is completed, the candidate is questioned by the dissertation committee members. For the candidate to pass the dissertation defense, a majority vote on the quality and originality of the research, the quality of the dissertation, and the performance of the candidate at the examination is required.

Recent Doctoral Dissertations:
- Jason A. Dittman, "Mercury Dynamics in Streams, Lakes, and Fish in the Northeastern, United States", 2010
- Jianwei Huang, "Durability Design of GFRP Bar Reinforced Concrete Members and a New Approach", 2010
- Youngil Cho, "The Responses of Soil, Soil Solution, and Stream Water of a Northern Hardwood Forest to Experimental Addition of Wollastonite", 2010
- Ankit Balaria, "Effects of Calcium Addition on Structure and Bioavailability of Soil Organic Matter", 2011
- Svetozlova Todorova, "Mercury Accumulation and Biological Transfer in Onondaga Lake: Ecosystem Response to Decreases in Mercury Load and Water Quality Improvements", 2012

FINANCIAL SUPPORT

Financial aid awards in the form of tuition scholarships, teaching assistantships, research assistantships, department and university fellowships are available on a competitive basis for qualified students. Most assistantships and fellowships provide full tuition for 24 credits over a calendar year. They also carry a stipend and require an average of 20 hours a week of instruction and/or research responsibilities during the academic year. Some summer support may be available. M.S. students receiving financial aid awards are expected to take the thesis option in their program of study.

FACULTY

FULL-TIME FACULTY

Riyad S. Aboutaha
Ph.D. (University of Texas at Austin), Associate Professor of Civil and Environmental Engineering.
Specialty: Structural Engineering.
E-mail: rsabouta@syr.edu

Sample Publications:
Chutarat, N. and Aboutaha, R.S., “Cyclic Response of Exterior Reinforced Concrete Beam-Column Joints Reinforced with Headed Bars,” American Concrete Institute, ACI Structural Journal, 100(2), March-April, 2003, pp. 259-264.

Teaching Interests:
Shobha K. Bhatia
Ph.D. (University of British Columbia), Professor of Civil and Environmental Engineering, Meredith Professor for Teaching Excellence
Specialty: Geotechnical Engineering.
E-mail: skbhatia@syr.edu

Sample Publications:

Teaching Interests:
Designing with Geosynthetics, Seepage and Earth Dams, Ground Improvement, Soil Dynamics and Advanced Soil Mechanics.

Research Interests:

Douglas F. Call
Ph.D. (Pennsylvania State University), Assistant Professor of Civil and Environmental Engineering
Specialty: Environmental Engineering.
E-mail: dfcall4@gmail.com

Sample Publications:
Call, D. F.; Merrill, M. D.; Logan, B. E. High surface area stainless steel brushes as cathodes in microbial electrolysis cells. Environmental Science and Technology 2009, 43(6), 2179-2183.

Teaching Interests:
Applied and Environmental Microbiology, Environmental Biotechnology, Wastewater Engineering and Design.

Research Interests:

David G. Chandler
Ph.D. (Cornell University), Associate Professor of Civil and Environmental Engineering
Specialty: Hydrology
E-mail: dgehandl@syr.edu

Sample Publications:
Nayak, A., Marks, D., Chandler, D.G., Seyfried, M. "Long-term Snow, Climate, and Streamflow Trends at the Reynolds Creek Experimental Watershed, Owyhee Mountains, Idaho, United States" Water Resources Research, 2010

Teaching Interests:

Research Interests:
Climate and Anthropogenic Impacts on Hydrology, Soil Physics, Alternative Waste Treatment Systems, Green Infrastructure.

Samuel P. Clemence
Ph.D. (Georgia Institute of Technology), Professor of Civil and Environmental Engineering, Meredith Professor for Teaching Excellence
Specialty: Geotechnical Engineering.
E-mail: spclemen@syr.edu

Sample Publications:

Teaching Interests:

Research Interests:

Joan V. Dannenhoffer
M.S.C.E (University of Connecticut), MBA (Rensselaer Polytechnic Institute), Part-time Associate Professor of Civil and Environmental Engineering
E-mail: jvdannen@syr.edu

Sample Publications:

Teaching Interests:
Engineering Mechanics, Engineering Materials

Research Interests:
Engineering Education Assessment and Teaching Methods

Cliff I. Davidson
Ph.D. (California Institute Technology), Professor of Civil and Environmental Engineering and Center of Excellence in Environmental and Energy Systems, Thomas C. and Colleen L. Wilmot Chair of Engineering; Director, Center for Sustainable Engineering
Specialty: Environmental Engineering
E-mail: davidson@syr.edu
Sample Publications:

Teaching Interests:
Environmental Engineering, Sustainable Engineering, Fluid Mechanics

Research Interests:
Environmental Flows of Chemicals, Air Quality, Sustainable Urban Development

Charles T. Driscoll
Ph.D. (Cornell University), University Professor of Environmental Systems Engineering, NAE (National Academy of Engineering)
Specialty: Environmental Engineering
E-mail: ctdrisco@syr.edu

Sample Publications:

Teaching Interests:
Environmental Engineering, Environmental Chemistry, Environmental Microbiology, Biogeochemistry, Environmental Systems Modeling.

Research Interests:

Chris E. Johnson
Ph.D. (University of Pennsylvania), Department Chair, Professor of Civil and Environmental Engineering
Specialty: Environmental Engineering.
E-mail: cejohns@syr.edu

Sample Publications:

Teaching Interests:

Research Interests:
Biogeochemistry, Soil Chemistry, Natural Organic Matter

Eric M. Lui
Ph.D. (Purdue University), Laura J. and L. Douglas Meredith Professor for Teaching Excellence, Associate Professor of Civil and Environmental Engineering.
Specialty: Structural Engineering.
E-mail: emlui@syr.edu

Sample Publications:

Teaching Interests:

Research Interests:
Nonlinear theories, Numerical Methods, Steel Structures, Damage Detection, Earthquake Resistant Design.

Dawit Negussey
Ph.D. (University of British Columbia), Program Director of Civil Engineering, Professor of Civil and Environmental Engineering.
Specialty: Geotechnical Engineering.
E-mail: negussey@syr.edu

Sample Publications:

Teaching Interests:
Geofoam Geotechnics, Soil Mechanics, Foundation Design, Transportation Engineering.

Research Interests:
Properties and Applications of Geofoams, Fiber Optic Sensors, Geotechnical Engineering.

O. Sam Salem
Ph.D. (University of Alberta, Canada), Professor of Civil and Environmental Engineering, Yabroudi Chair of Sustainable Civil Infrastructures.
Specialty: Civil Engineering/Construction Engineering and Management
E-mail: omsalem@syr.edu

Sample Publications:

Teaching and Research Interests:
Construction Engineering and Management, Infrastructure Engineering and Asset Management, Green Buildings and Sustainable Infrastructures
PART-TIME, AFFILIATED, AND EMERITUS FACULTY

Gary S. Ayers
B.S. (SUNY-ESF), Adjunct Faculty
Teaching Interests:
Construction Management

Lisa Cleckner
Ph.D. (University of Michigan), Research Faculty
Teaching Interests:
Environmental Engineering
Research Interests:
Environmental Health Sciences

Kimberly M. Driscoll
M.S.E.E. (Syracuse University), Research Faculty
Teaching Interests:
Environmental Engineering
Research Interests:
Environmental Systems

Alexander A. Friedman
D. Eng. (University of California-Davis), Emeritus Professor
Teaching Interests:
Environmental Engineering, Water and Wastewater Treatment.
Research Interests:
Water and Wastewater Treatment.

Swiatoslav W. Kaczmar
Ph.D. (Michigan State University), Adjunct Faculty
Teaching Interests:
Principles of Toxicology, Industrial Hygiene.
Research Interests:
Environmental Toxicology and Industrial Hygiene.

Raymond D. Letterman
Ph.D. (Northwestern University), Emeritus Professor
Teaching Interests:
Research Interests:

James A. Mandel
Ph.D. (Syracuse University), Emeritus/Research Professor
Teaching Interests:
Finite Element Analysis, Plate and Shell Structures.
Research Interests:
Composite Materials, Fiber Reinforcement Concrete, Curved Bridge Design, Finite Element Analysis.

Sinéad Mac Namara
Ph.D. (Princeton University), Affiliated Faculty
Teaching Interests:
Structural Analysis and Design.
Research Interests:
Thin-shell concrete in nuclear containment structures.

Belal Mousa
Ph.D. (Syracuse University), Adjunct Faculty
Teaching Interests:
Research Interests:
Fiber Reinforced Concrete.

Emmet M. Owens, Jr.
M.S.C.E. (Colorado State University), Adjunct Faculty
Teaching Interests:
Research Interests:

Peter W. Plumley
Ph.D. (UC-Santa Cruz), Research Faculty
Teaching Interests:
Geology, Computing, Freshman Engineering
Research Interests:
Science Education, K-12 Outreach

Suresh Santanam
Sc.D. (Harvard University), Adjunct Faculty
Teaching Interests:
Air Pollution, Environmental Regulations, Control System Design, Industrial Toxicology.
Research Interests:
Air Quality Monitoring and Control, Indoor Air Quality, Air Pollution Exposure Modeling, Source Apportionment.

Andria Costello Staniec
Ph.D. (California Institute of Technology), Associate Provost/Associate Professor
Teaching Interests:
Environmental Engineering, Environmental Microbiology, Bioremediation, Biotechnology.
Research Interests:
Applied Environmental Microbiology, Bioremediation, Global Biogeochemical Cycles, Changes in Microbial Communities in Response to Anthropogenic Disturbance, Applications of Molecular Biology to Environmental Engineering.
Laura J. Steinberg
Ph.D (Duke University) Professor and Dean
Teaching and Research Interests:
Risk assessment, infrastructure resilience, natural and technological hazards.

David S. Wazenkekewicz
B.S. (Syracuse University), Adjunct Faculty
Teaching Interests:
Solid Waste Management.
Research Interests:
Solid Waste Utilization and Management.

GRADUATE COURSE CATALOG

If you are not on campus, you can download the Graduate Course Catalog from http://coursescatalog.syr.edu/2012/

CONTACT INFORMATION

For more information about how you could continue your education in the Department of Civil and Environmental Engineering at Syracuse University, please contact:

Chris E. Johnson
Chair, Department of Civil and Environmental Engineering
151G Link Hall
Syracuse University
Syracuse, NY 13244-1240
Tel: 315-443-4425/Fax: 315-443-1243
E-mail: cejohns@syr.edu
Appendix A

M.S. Program of Study Forms
PROGRAM OF STUDY FORM

M.S. in Environmental Engineering (MSEE)

All MSEE students are required to take the courses listed in this Program of Study Form.

M.S. without Thesis

1. All the courses in Group I (9 credit hours)
2. One course from Group II (3 credit hours)
3. Two courses from Group III (6 credit hours)
4. One course from Group IV (3 credit hours)
5. Two additional courses from Groups II through V upon advisor’s approval, one of which can be CIE 690 - Independent study (6 credit hours)
6. CIE 996 – Master’s Project, or CIE 600 – Environmental Assessment (3 credit hours)

Total number of credit hours = 30

M.S. with Thesis

1. All courses in Group I (9 credit hours)
2. One course from Group II (3 credit hours)
3. Two courses from Group III (6 credit hours)
4. One course from Group IV (3 credit hours)
5. One additional course from Groups II through V, or CIE 690 – Independent Study, upon advisor’s approval (3 credit hours)
6. CIE 997 – Master’s Thesis (6 credit hours)

Total number of credit hours = 30
PROGRAM OF STUDY FORM

M.S. in Environmental Engineering (MSEE)

<table>
<thead>
<tr>
<th>Group</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 671 – Environmental Chemistry and Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 672 – Applied Environmental Microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 642 – Treatment Processes in Environmental Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All are required in this group for MSEE students</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group II Advanced Fundamentals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 565/CEN565 – Bioremediation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 567/CEN567 – Biotechnology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 651 – Physical-Chemical Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 652 – Biological Processes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 653 – Applied Aquatic Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 657 – Biogeochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 662 – Chemistry of Soils and Natural Surfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 673 – Transport Processes in Environmental Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select at least one course from this group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group III Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 555 – Hazardous Waste Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 558 – Solid Wastes-Collection and Disposal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 561 – Air Resources I (or SUNY ESF equivalent by petition)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 570 – Water and Wastewater Treatment Plant Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEN 551 – Biochemical Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select at least two from this group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group IV Advanced Tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 500 – Water Quality Modeling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 687 – Environmental Geostatistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO 683 – Geographic Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course in probability and statistics and/or regression analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select at least one course from this group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group V Some Suggested Elective Areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Hydrology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law and Public Policy Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other CIE graduate courses not listed above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advisor’s approval is required before a student can take courses from this group</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM OF STUDY FORM

M.S. in Environmental Engineering Science (MSEES)

All MSEES students are required to take the courses listed in this Program of Study Form.

M.S. without Thesis

1. Both courses in Group I (6 credit hours)
2. Two courses from Group II (6 credit hours)
3. Two courses from Group III (6 credit hours)
4. Three additional courses from Groups II to IV upon advisor’s approval. Courses from the suggested areas in Group IV are recommended. One of these courses can be CIE 690 - Independent study (9 credit hours)
5. CIE 996 – Master’s Project, or CIE 600 – Environmental Assessment (3 credit hours)

Total number of credit hours = 30

M.S. with Thesis

1. Both courses in Group I (6 credit hours)
2. Two courses from Group II (6 credit hours)
3. Two courses from Group III (6 credit hours)
4. Two additional courses from Groups II to IV upon advisor’s approval. Courses from the suggested areas in Group IV are recommended. One of these courses can be CIE 690 - Independent study (6 credit hours)
5. CIE 997 – Master’s Thesis (6 credit hours)

Total number of credit hours = 30
PROGRAM OF STUDY FORM

M.S. in Environmental Engineering Science (MSEES)

<table>
<thead>
<tr>
<th>Group</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>CIE 671 – Environmental Chemistry and Analysis</td>
<td>Both courses in this group are required for MSEES students</td>
</tr>
<tr>
<td></td>
<td>CIE 672 – Applied Environmental Microbiology</td>
<td></td>
</tr>
<tr>
<td>Group II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Fundamentals</td>
<td>CIE 565/CEN565 – Bioremediation</td>
<td>Select at least two courses from this group</td>
</tr>
<tr>
<td></td>
<td>CIE 567/CEN567 – Biotechnology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIE 653 – Applied Aquatic Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIE 657 – Biogeochemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIE 662 – Chemistry of Soils and Natural Surfaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIE 673 – Transport Processes in Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>Group III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Tools</td>
<td>CIE 500 – Water Quality Modeling</td>
<td>Select at least two courses from this group</td>
</tr>
<tr>
<td></td>
<td>CIE 687 – Environmental Geostatistics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GEO 683 – Geographic Information Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Course in probability and statistics and/or regression analysis</td>
<td></td>
</tr>
<tr>
<td>Group IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some Suggested Elective Areas</td>
<td>Advanced Hydrology</td>
<td>Advisor’s approval is required before a student can take courses from this group</td>
</tr>
<tr>
<td></td>
<td>Law and Public Policy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Computer Programming</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other CIE graduate courses not listed above</td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM OF STUDY FORM

M.S. in Civil Engineering
(with an emphasis in Construction Engineering and Management)

All MSCE students interested in Construction Engineering and Management (CEM) are required to take the courses listed in this Program of Study Form.

M.S. without Thesis

1. All courses in Group I (9 credit hours)
2. One course from Group II (3 credit hours)
3. One course from Group III - (3 credit hours)
4. One course from Group IV (3 credit hours)
5. Three additional courses from Groups II through V upon advisor’s approval, one of which can be CIE 690 - Independent study (9 credit hours)
6. CIE 996 – Master’s Project or one course from Groups II through V (3 credit hours)
7. For students who choose not to take CIE 996 – Master’s Project, an Exit Paper is required for graduation. The Exit Paper must address issues related to Construction Engineering and Management. The Paper can be an original document or it can be a critical review of a journal article, which has been published. The Exit Paper has a minimum length requirement of 2000 words and has to be approved by the CEM advisor.

Total number of credit hours = 30

M.S. with Thesis

1. All courses in Group I (9 credit hours)
2. One course from Group II (3 credit hours)
3. One course from Group III - (3 credit hours)
4. One course from Group IV (3 credit hours)
5. Two additional courses from Groups II through V upon CEM advisor’s approval, one of which can be CIE 690 - Independent study (6 credit hours)
6. CIE 997 – Master’s Thesis (6 credit hours)

Total number of credit hours = 30

PROGRAM OF STUDY FORM

M.S. in Civil Engineering
(with an emphasis in Construction Engineering and Management)

<table>
<thead>
<tr>
<th>Group</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 600 – Construction Engineering and Project Management*</td>
<td>All are required in this group</td>
<td></td>
</tr>
<tr>
<td>ECS 636 – Infrastructure Systems Engineering and Asset Management **</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS 526 – Statistics for Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Fundamentals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 677 – Design of Structural Systems</td>
<td>Select at least one course from this group</td>
<td></td>
</tr>
<tr>
<td>CIE 637 – Advanced Soil Mechanics and Foundation Engineering I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 678 – Rehabilitation of Civil Infrastructure*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECS 600 – Introduction to Sustainable Engineering</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 548 – Engineering Economics and Technology Valuation**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE 629 – Modeling and Optimization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFE 634 – Productivity and Quality Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 535 – Structural Steel Design</td>
<td>Select at least one course from this group</td>
<td></td>
</tr>
<tr>
<td>CIE 536 – Prestressed Concrete Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 545 – Pavement Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 549 – Geofoam Properties and Application</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 558 – Solid Wastes-Collection and Disposal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 570 – Water and Wastewater Treatment Plant Design*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 638 – Advanced Soil Mechanics and Foundation Engineering II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 641 – Seepage and Earth Dam Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 643 – Transportation Engineering*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 739 – Soil Stabilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management and Advanced Tools</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BUA 600 – Interpersonal & Group Skills for Managers</td>
<td>Select at least one course from this group</td>
<td></td>
</tr>
<tr>
<td>ECS 650 – Managing Sustainability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO 683 – Geographic Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPP 758 – Environmental Law and Public Policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBC 616 – Operations Management (1.5 cr) and MBC 617 – Supply Chain Management (1.5 cr)</td>
<td>Select at least one course from this group</td>
<td></td>
</tr>
<tr>
<td>PPA 709 – Public Organizations and Management*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPA 734 – Public Budgeting, or PPA 731 - Financial Management in State and Local Governments**</td>
<td>Select at least one course from this group</td>
<td></td>
</tr>
<tr>
<td>PPA 895 – Managerial Leadership**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCM 656 – Project Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCM 701 – Introduction to Supply Chain Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCM 702 – Principles of Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some Suggested Elective Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engineering and Computer Science courses not listed above</td>
<td>CEM Advisor’s approval is required before a student can take courses from this group</td>
<td></td>
</tr>
<tr>
<td>Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Construction Management (ESF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Public Administration and Management courses not listed above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** These courses are required to complete the Certificate of Public Infrastructure Management and Leadership.

* One of these courses is needed to complete the Certificate of Public Infrastructure Management and Leadership.
PROGRAM OF STUDY FORM
M.S. in Civil Engineering (MSCE)
(with an emphasis in Geotechnical Engineering)

All MSCE students interested in Geotechnical Engineering are required to take the courses listed in this Program of Study Form.

M.S. without Thesis

1. All courses in Group I (9 credit hours)
2. One course from Group II (3 credit hours)
3. Two courses from Group III (6 credit hours)
4. One course from Group IV (3 credit hours)
5. Two additional courses from Groups II through V upon advisor’s approval, one of which can be CIE 690 - Independent study (6 credit hours)
6. CIE 996 – Master’s Project (3 credit hours)

Total number of credit hours = 30

M.S. with Thesis

1. All courses in Group I (9 credit hours)
2. One course from Group II (3 credit hours)
3. Two courses from Group III (6 credit hours)
4. One course from Group IV (3 credit hours)
5. One additional course from Groups II through V, or CIE 690 – Independent Study, upon advisor’s approval (3 credit hours)
6. CIE 997 – Master’s Thesis (6 credit hours)

Total number of credit hours = 30
PROGRAM OF STUDY FORM

M.S. in Civil Engineering (MSCE)
(with an emphasis in Geotechnical Engineering)

<table>
<thead>
<tr>
<th>Group I Core Courses</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE 637 – Advanced Soil Mechanics and Foundation Engineering I</td>
<td>All are required in this group</td>
<td></td>
</tr>
<tr>
<td>CIE 638 – Advanced Soil Mechanics and Foundation Engineering II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 641 – Seepage and Earth Dam Design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group II Advanced Fundamentals</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE 740 – Soil Dynamics</td>
<td>Select at least one course from this group</td>
<td></td>
</tr>
<tr>
<td>CIE 737 – Applied Soil Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 739 – Soil Stabilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 662 – Chemistry of Soils and Natural Surfaces</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group III Design</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE 549 – Designing and Geofoam</td>
<td>Select at least two from this group</td>
<td></td>
</tr>
<tr>
<td>CIE 545 – Pavement Design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIE 584 – Designing with Geosynthetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERE 596 – Storm Water Management (SUNY ESF)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group IV Advanced Tools</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIE 633 – Finite Element Analysis</td>
<td>Select at least one course from this group</td>
<td></td>
</tr>
<tr>
<td>CIE 687 – Environmental Geostatistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEO 683 – Geographic Information Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERE 550 – Intro/Geo Info Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course in probability and statistics and/or regression analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group V Some Suggested Elective Areas</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Management</td>
<td>Advisor’s approval is required before a student can take courses from this group</td>
<td></td>
</tr>
<tr>
<td>Advanced Hydrology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Law and Public Policy Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other CIE graduate courses not listed above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PROGRAM OF STUDY FORM

M.S. in Civil Engineering
(with an emphasis in Structural Engineering)

All MSCE students interested in Structural Engineering are required to take the courses listed in this Program of Study Form.

M.S. without Thesis

1. All courses in Group I (9 credit hours)
2. One course from Group II (3 credit hours)
3. Two courses from Group III - One of which must be steel design, and the other must be concrete design or bridge engineering (6 credit hours)
4. One course from Group IV (3 credit hours)
5. Two additional courses from Groups II through V upon advisor’s approval, one of which can be CIE 690 - Independent study (6 credit hours)
6. CIE 996 – Master’s Project (3 credit hours)

Total number of credit hours = 30

M.S. with Thesis

1. All courses in Group I (9 credit hours)
2. One course from Group II (3 credit hours)
3. Two courses from Group III - One of which must be steel design, and the other must be concrete design or bridge engineering (6 credit hours)
4. One course from Group IV (3 credit hours)
5. One additional course from Groups II through V, or CIE 690 – Independent Study, upon advisor’s approval (3 credit hours)
6. CIE 997 – Master’s Thesis (6 credit hours)

Total number of credit hours = 30
PROGRAM OF STUDY FORM

M.S. in Civil Engineering
(with an emphasis in Structural Engineering)

<table>
<thead>
<tr>
<th>Group</th>
<th>Course Title</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Core Courses</td>
<td>CIE 633 – Finite Element Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIE 677 – Design of Structural Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAE 635 – Advanced Mechanics of Materials</td>
<td>All are required in this group</td>
</tr>
<tr>
<td>Group II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Analysis</td>
<td>CIE 631 – Structural Analysis I (offered once every two years)</td>
<td>Select at least one course from this group</td>
</tr>
<tr>
<td></td>
<td>CIE 634 – Stability Analysis of Structural Systems (offered irregularly)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIE 678 – Rehabilitation of Civil Infrastructure (offered yearly)</td>
<td></td>
</tr>
<tr>
<td>Group III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Design</td>
<td>CIE 535 – Structural Steel Design (offered once every two years)</td>
<td>Select at least one course on steel design</td>
</tr>
<tr>
<td></td>
<td>CIE 536 – Prestressed Concrete Design (offered once every three years)</td>
<td>AND one course on concrete design or bridge engineering</td>
</tr>
<tr>
<td></td>
<td>CIE 635 – Advanced RC Design (offered once every three years)</td>
<td>from this group</td>
</tr>
<tr>
<td></td>
<td>CIE 636 – Plastic Design of Steel Structures (offered irregularly)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIE 666 – Design of Concrete Bridges (offered once every three years)</td>
<td></td>
</tr>
<tr>
<td>Group IV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamics/Earthquake Engineering</td>
<td>CIE 538 – Dynamics of Structures (offered every four years, alternate with CIE 632)</td>
<td>Select at least one course from this group</td>
</tr>
<tr>
<td></td>
<td>CIE 632 – Structural Analysis II (offered every four years, alternate with CIE 538)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CIE 740 – Soil Dynamics (offered irregularly, required CIE 637 as prerequisite)</td>
<td></td>
</tr>
<tr>
<td>Group V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some Suggested Elective Areas</td>
<td>Architecture</td>
<td>Advisor’s approval is required before a student can take courses from this group</td>
</tr>
<tr>
<td></td>
<td>Construction Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Political Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering and Computer Science</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Information Studies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Public Communications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Other CIE graduate courses not listed above</td>
<td></td>
</tr>
</tbody>
</table>
M.S. GRADUATE ADVISING FORM
SYRACUSE UNIVERSITY
Department of Civil and Environmental Engineering

Student’s Name: _____________________________ E-Mail: _____________________________
Advisor’s Name: _____________________________ E-Mail: _____________________________

Program: __________________________________

FIRST SEMESTER:

<table>
<thead>
<tr>
<th>Subject & Catalog Number</th>
<th>Course Title</th>
<th>Class Number</th>
<th>Group Number</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>Student Signature</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>Advisor Signature</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECOND SEMESTER:

<table>
<thead>
<tr>
<th>Subject & Catalog Number</th>
<th>Course Title</th>
<th>Class Number</th>
<th>Group Number</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>Student Signature</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>Advisor Signature</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIRD SEMESTER:

<table>
<thead>
<tr>
<th>Subject & Catalog Number</th>
<th>Course Title</th>
<th>Class Number</th>
<th>Group Number</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>Student Signature</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>Advisor Signature</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOURTH SEMESTER:

<table>
<thead>
<tr>
<th>Subject & Catalog Number</th>
<th>Course Title</th>
<th>Class Number</th>
<th>Group Number</th>
<th>Date:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td>Student Signature</td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td>Advisor Signature</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>