Utilizing Shape Memory Polymers to Generate Complex Wrinkles for Active Cell Culture

Shelby L. Buffington, Derek A. Loh, Patrick T. Mather, James H. Henderson
Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY
Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY

Probing Cell Material Interactions

Static Biomaterial Systems

- Very Precise, but not dynamic

Dynamic Biomaterial Systems

- Dynamic, but not as precise as Static

Active Wrinkling on SMP Substrates

- Heat
- Stretch
- Au Sputter Coat

Wrinkles on Triple Shape Memory Composites

- Temperature (deg C)
- Gold layer
- Wrinkles

Strain Amount and Angle Between Strains

- 5% Total Strain
- 2.5% PCL 2.5% Epoxy
- 10% Total Strain
- 5% PCL 5% Epoxy
- 20% Total Strain
- 10% PCL 10% Epoxy

Impact of Strain Ratio

- 1.3 Ratio of Strain between the PCL:Epoxy
- 1.1 Ratio of Strain between the PCL:Epoxy

Time Between Recoveries

- 2.5 PCL 2.5 Epoxy at a 90 angle
- 3.75 PCL 7.5 Epoxy at a 90 angle

Conclusions

- Many factors impact complex wrinkling formation including:
 - the amount of strain,
 - the angle between the two programmed strains,
 - the ratio between the two programmed strains,
 - the time between the two recoveries.

- By understanding all of these variables, we can control the pattern formation along the surface and potentially use these patterns to impact cell behavior.

Future Work

- Adjust the material chemistry to a cyto-compatible material platform and assess cell behavior in response to static complex wrinkled patterns.
- Design a new triple shape composite to allow for dynamic complex wrinkling formation during cell culture.
- Assess cell responses to dynamic pattern formation, including the potential of these patterns to impact stem cell differentiation.

Acknowledgements

Funding from NSF IGERT Program, DGE-1068780, is gratefully acknowledged, along with use of the facilities of the Syracuse Biomaterials Institute at Syracuse University, and the NSF REU program, Award No. EEC-1156642.

References