Mechanical and Aerospace Engineering Research Team Receives $1.5 Million NSF Grant to Establish Research Center for Solid-State Electric Power Storage at Syracuse University

 Mechanical and Aerospace Engineering Research Team Receives $1.5 Million NSF Grant to Establish Research

July 22, 2021

Mechanical and aerospace engineering Professor Quinn Qiao and a research team from the College of Engineering and Computer Science received a $1.5 million award from the National Science Foundation (NSF) and industry members to develop an Industry/University Collaborative Research Center (IUCRC) for solid-state electric power storage with a site at Syracuse University. Syracuse University will partner with South Dakota School of Mines & Technologies and Northeastern University to build this NSF-sponsored center. The center will focus on developing eco-friendly, safe, and economically feasible all-solid-state energy storage technology for portable and medical applications, automotive industry, centralized and decentralized electric grids, military applications, and energy security.

Potential research projects will include materials design and testing with particular focus on interface engineering, solid electrolytes development, electrode materials synthesis, advanced mathematical modeling, and in-situ imaging to characterize performance, manufacturing process testing, battery system development, and fabrication of intrinsically combined solar/battery devices. In addition to the study of traditional materials, the center will also explore those relevant to earlier stage design and development of promising newer glass ceramic materials.

“Energy storage is critically needed to deploy renewable energies such as solar and wind, as well as development of electric vehicles. Energy storage allows clean energy to be available when sunlight is unavailable at night or cloud days, or when wind is not sufficient,” said Qiao. “Current lithium batteries typically use liquid electrolytes that may lead to safety issues from explosions or fires.  This NSF IUCRC will provide Syracuse University a great platform to work with industry partners, which offers numerous opportunities for our faculty and students. Industry members will also help to guide the research directions and projects that will lead to commercialization of solid-state batteries. This center will also help us to build the Cluster for Materials for Energy Applications.”

The center will work closely with industry partners in New York, across the United States and globally to develop high capacity, fast charging, safe and cost-effective solid-state batteries. The batteries developed by the center will be aligned with the energy storage set by the State of New York: 1,500 Megawatts (MW) of energy storage by 2025 and 3,000 Megawatts (MW) by 2030.

Qiao will be the principal investigator and site director for the NSF award. Mechanical and aerospace engineering professors Jeongmin Ahn, Bing Dong, Shalabh Maroo, Weiwei Zheng, Teng Zhang and Jianshun Zhang will be co-co-principal investigators or senior investigators.

“Mechanical and aerospace engineering faculty have a tradition of conducting a quality research in energy systems,” said mechanical and engineering department chair Young B. Moon. “With the establishment of this center, the faculty plans to elevate the research to the next level of international prominence working with other faculty members at Syracuse University.”

“We are very excited about this new IUCRC center,” said Associate Dean for Research and Graduate Programs Dacheng Ren. It extends our established strength in energy research and elevates it to a higher level. Besides research innovation, the center also brings industry insights and new training opportunities for our students.”

“This center positions Syracuse University on the leading edge of solid-state power storage. It is not only a fast growing field but an increasingly important one as we look to meet the need for safer, higher capacity batteries,” said College of Engineering and Computer Science Dean J. Cole Smith.